👀
Crash Visualization
  • Welcome
  • Preface
    • Who the book is written for
    • How the book is organized
  • 1. Introduction of Data Visualization
    • 1.1 What is data visualization?
    • 1.2 Why does visualization matter?
  • 2. Tricks in Visualization
    • 2.1 Choose Appropriate Chart
    • 2.2 Features of Charts
      • 2.2.1 Table
      • 2.2.2 Column Chart
      • 2.2.3 Line Chart
      • 2.2.4 Pie Chart
      • 2.2.5 Scatter Chart
      • 2.2.6 Map Chart
    • 2.3 Misused Graph
    • 2.4 Tips in Visualization
  • 3. Matplotlib
    • 3.1 Basic Concepts
    • 3.2 Line Chart
    • 3.3 Area Chart
    • 3.4 Column Chart
    • 3.5 Histogram Chart
    • 3.6 Scatter Chart
    • 3.7 Lollipop Chart
    • 3.8 Pie Chart
    • 3.9 Venn Chart
    • 3.10 Waffle Chart
    • 3.11 Animation
  • 4. Seaborn
    • 4.1 Trends
    • 4.2 Ranking
      • 4.2.1 Barplot
      • 4.2.2 Boxplot
    • 4.3 Composition
      • 4.3.1 Stacked Chart
    • 4.4 Correlation
      • 4.4.1 Scatter Plot
      • 4.4.2 Linear Relationship
      • 4.4.3 Heatmap
      • 4.4.4 Pairplot
    • 4.5 Distribution
      • 4.5.1 Boxplot
      • 4.5.2 Violin plot
      • 4.5.3 Histogram plot
      • 4.5.4 Density plot
      • 4.5.5 Joint plot
  • 5. Bokeh
    • 5.1 Basic Plotting
    • 5.2 Data Sources
    • 5.3 Annotations
    • 5.4 Categorical Data
    • 5.5 Presentation and Layouts
    • 5.6 Linking and Interactions
    • 5.7 Network Graph
    • 5.8 Widgets
  • 6. Plotly
    • 6.1 Fundamental Concepts
      • 6.1.1 Plotly Express
      • 6.1.2 Plotly Graph Objects
    • 6.2 Advanced Charts
      • 6.2.1 Advanced Scatter Chart
      • 6.2.2 Advanced Bar Chart
      • 6.2.3 Advanced Pie Chart
      • 6.2.4 Advanced Heatmap
      • 6.2.5 Sankey Chart
      • 6.2.6 Tables
    • 6.3 Statistical Charts
      • 6.3.1 Common Statistical Charts
      • 6.3.2 Dendrograms
      • 6.3.3 Radar Chart
      • 6.3.4 Polar Chart
      • 6.3.5 Streamline Chart
    • 6.4 Financial Charts
      • 6.4.1 Funnel Chart
      • 6.4.2 Candlestick Chart
      • 6.4.3 Waterfall Chart
  • Support
    • Donation
Powered by GitBook
On this page
  • 1. Row Layout
  • 2. Column Layout
  • 3. Grid Layout
  • 4.Multiple Objects

Was this helpful?

  1. 5. Bokeh

5.5 Presentation and Layouts

Previous5.4 Categorical DataNext5.6 Linking and Interactions

Last updated 4 years ago

Was this helpful?

Bokeh includes several layout options for arranging plots and widgets. They make it possible to arrange multiple components to create interactive dashboards or data applications.

You've seen some examples in the last sessions. We can nest as many rows, columns, or grids of plots together as we like.

1. Row Layout

To display plots horizontally, use the row() function.

from bokeh.layouts import row

p1 = figure(plot_width=300, plot_height=300)
p1.circle([2,2], [3,2],size=100, color="cyan")

p2 = figure(plot_width=300, plot_height=300)
p2.circle([2,2], [3,2],size=100, color="royalblue")

p3 = figure(plot_width=300, plot_height=300)
p3.circle([2,2], [3,2],size=100, color="salmon")

show(row(p1,p2,p3))

2. Column Layout

To display plots or widgets in a vertical, use the column() function.

from bokeh.layouts import column

p1 = figure(plot_width=300, plot_height=200)
p1.circle([2,2], [3,2],size=100, color="cyan")

p2 = figure(plot_width=300, plot_height=200)
p2.circle([2,2], [3,2],size=100, color="royalblue")

p3 = figure(plot_width=300, plot_height=200)
p3.circle([2,2], [3,2],size=100, color="salmon")

show(column(p1,p2,p3))

3. Grid Layout

Thegridplot()function can be used to arrange Bokeh Plots in the grid layout. It also collects all tools into a single toolbar, and the currently active tool is the same for all plots in the grid. It is possible to leave “empty” spaces in the grid by passingNoneinstead of a plot object.

from bokeh.layouts import gridplot

# make a grid
grid = gridplot([[p1, p2], [p3,None]], plot_width=250, plot_height=200)

show(grid)

4.Multiple Objects

Below is a sophisticated example of a nested layout with different sizing modes.