Density plots are a commonly used tool to visualize the distribution of a continuous variable.
mpg = sns.load_dataset('mpg') # load the embedded dataset
# Draw Density Plot
sns.kdeplot(mpg.loc[mpg["cylinders"] == 4, "mpg"], shade=True, color="g", label="Cyl=4", alpha=.7)
sns.kdeplot(mpg.loc[mpg["cylinders"] == 5, "mpg"], shade=True, color="deeppink", label= "Cyl=5", alpha=.7)
sns.kdeplot(mpg.loc[mpg["cylinders"] == 6, "mpg"], shade=True, color="dodgerblue", label= "Cyl=6", alpha=.7)
sns.kdeplot(mpg.loc[mpg["cylinders"] == 8, "mpg"], shade=True, color="orange", label= "Cyl=8", alpha=.7)
plt.title("Density Plot of MPG by n_Cylinders")
sns.distplot(mpg.loc[mpg['origin'] == 'usa', 'horsepower'], color='g', label='USA', hist_kws={'alpha':.6})
sns.distplot(mpg.loc[mpg['origin'] == 'europe', 'horsepower'], color='deeppink', label='Europe', hist_kws={'alpha':.6})
sns.distplot(mpg.loc[mpg['origin'] == 'japan', 'horsepower'], color='dodgerblue', label='Japan', hist_kws={'alpha':.6})
plt.title('Density Plot of Horsepower by origins')
plt.legend()
2. Density Curves with Histogram
3. Bandwidth Control (Bins)
sns.kdeplot(mpg.loc[mpg["cylinders"] == 6, "mpg"], shade=True, color="g", label="bw: 0.1", alpha=.7,bw=.1)
sns.kdeplot(mpg.loc[mpg["cylinders"] == 6, "mpg"], shade=True, color="b", label="bw: 0.5", bw=.5)
plt.title("With bandwidth control")