👀
Crash Visualization
  • Welcome
  • Preface
    • Who the book is written for
    • How the book is organized
  • 1. Introduction of Data Visualization
    • 1.1 What is data visualization?
    • 1.2 Why does visualization matter?
  • 2. Tricks in Visualization
    • 2.1 Choose Appropriate Chart
    • 2.2 Features of Charts
      • 2.2.1 Table
      • 2.2.2 Column Chart
      • 2.2.3 Line Chart
      • 2.2.4 Pie Chart
      • 2.2.5 Scatter Chart
      • 2.2.6 Map Chart
    • 2.3 Misused Graph
    • 2.4 Tips in Visualization
  • 3. Matplotlib
    • 3.1 Basic Concepts
    • 3.2 Line Chart
    • 3.3 Area Chart
    • 3.4 Column Chart
    • 3.5 Histogram Chart
    • 3.6 Scatter Chart
    • 3.7 Lollipop Chart
    • 3.8 Pie Chart
    • 3.9 Venn Chart
    • 3.10 Waffle Chart
    • 3.11 Animation
  • 4. Seaborn
    • 4.1 Trends
    • 4.2 Ranking
      • 4.2.1 Barplot
      • 4.2.2 Boxplot
    • 4.3 Composition
      • 4.3.1 Stacked Chart
    • 4.4 Correlation
      • 4.4.1 Scatter Plot
      • 4.4.2 Linear Relationship
      • 4.4.3 Heatmap
      • 4.4.4 Pairplot
    • 4.5 Distribution
      • 4.5.1 Boxplot
      • 4.5.2 Violin plot
      • 4.5.3 Histogram plot
      • 4.5.4 Density plot
      • 4.5.5 Joint plot
  • 5. Bokeh
    • 5.1 Basic Plotting
    • 5.2 Data Sources
    • 5.3 Annotations
    • 5.4 Categorical Data
    • 5.5 Presentation and Layouts
    • 5.6 Linking and Interactions
    • 5.7 Network Graph
    • 5.8 Widgets
  • 6. Plotly
    • 6.1 Fundamental Concepts
      • 6.1.1 Plotly Express
      • 6.1.2 Plotly Graph Objects
    • 6.2 Advanced Charts
      • 6.2.1 Advanced Scatter Chart
      • 6.2.2 Advanced Bar Chart
      • 6.2.3 Advanced Pie Chart
      • 6.2.4 Advanced Heatmap
      • 6.2.5 Sankey Chart
      • 6.2.6 Tables
    • 6.3 Statistical Charts
      • 6.3.1 Common Statistical Charts
      • 6.3.2 Dendrograms
      • 6.3.3 Radar Chart
      • 6.3.4 Polar Chart
      • 6.3.5 Streamline Chart
    • 6.4 Financial Charts
      • 6.4.1 Funnel Chart
      • 6.4.2 Candlestick Chart
      • 6.4.3 Waterfall Chart
  • Support
    • Donation
Powered by GitBook
On this page
  • 1. Simple Density Chart
  • 2. Density Curves with Histogram
  • 3. Bandwidth Control (Bins)

Was this helpful?

  1. 4. Seaborn
  2. 4.5 Distribution

4.5.4 Density plot

Previous4.5.3 Histogram plotNext4.5.5 Joint plot

Last updated 4 years ago

Was this helpful?

Density plots are a commonly used tool to visualize the distribution of a continuous variable.

mpg = sns.load_dataset('mpg')   # load  the  embedded  dataset

1. Simple Density Chart

# Draw Density Plot

sns.kdeplot(mpg.loc[mpg["cylinders"] == 4, "mpg"], shade=True, color="g", label="Cyl=4", alpha=.7)
sns.kdeplot(mpg.loc[mpg["cylinders"] == 5, "mpg"], shade=True, color="deeppink", label= "Cyl=5", alpha=.7)
sns.kdeplot(mpg.loc[mpg["cylinders"] == 6, "mpg"], shade=True, color="dodgerblue", label= "Cyl=6", alpha=.7)
sns.kdeplot(mpg.loc[mpg["cylinders"] == 8, "mpg"], shade=True, color="orange", label= "Cyl=8", alpha=.7)
plt.title("Density Plot of MPG by n_Cylinders")
sns.distplot(mpg.loc[mpg['origin'] == 'usa', 'horsepower'],  color='g', label='USA', hist_kws={'alpha':.6})
sns.distplot(mpg.loc[mpg['origin'] == 'europe', 'horsepower'],  color='deeppink', label='Europe', hist_kws={'alpha':.6})
sns.distplot(mpg.loc[mpg['origin'] == 'japan', 'horsepower'], color='dodgerblue', label='Japan', hist_kws={'alpha':.6})
plt.title('Density Plot of Horsepower by origins')
plt.legend()

2. Density Curves with Histogram

3. Bandwidth Control (Bins)

sns.kdeplot(mpg.loc[mpg["cylinders"] == 6, "mpg"], shade=True, color="g", label="bw: 0.1", alpha=.7,bw=.1)
sns.kdeplot(mpg.loc[mpg["cylinders"] == 6, "mpg"], shade=True, color="b", label="bw: 0.5", bw=.5)
plt.title("With  bandwidth control")

Just like in matplotlib, in seaborn, this is controlled using the bw argument of the kdeplot function.

bins