👀
Crash Visualization
  • Welcome
  • Preface
    • Who the book is written for
    • How the book is organized
  • 1. Introduction of Data Visualization
    • 1.1 What is data visualization?
    • 1.2 Why does visualization matter?
  • 2. Tricks in Visualization
    • 2.1 Choose Appropriate Chart
    • 2.2 Features of Charts
      • 2.2.1 Table
      • 2.2.2 Column Chart
      • 2.2.3 Line Chart
      • 2.2.4 Pie Chart
      • 2.2.5 Scatter Chart
      • 2.2.6 Map Chart
    • 2.3 Misused Graph
    • 2.4 Tips in Visualization
  • 3. Matplotlib
    • 3.1 Basic Concepts
    • 3.2 Line Chart
    • 3.3 Area Chart
    • 3.4 Column Chart
    • 3.5 Histogram Chart
    • 3.6 Scatter Chart
    • 3.7 Lollipop Chart
    • 3.8 Pie Chart
    • 3.9 Venn Chart
    • 3.10 Waffle Chart
    • 3.11 Animation
  • 4. Seaborn
    • 4.1 Trends
    • 4.2 Ranking
      • 4.2.1 Barplot
      • 4.2.2 Boxplot
    • 4.3 Composition
      • 4.3.1 Stacked Chart
    • 4.4 Correlation
      • 4.4.1 Scatter Plot
      • 4.4.2 Linear Relationship
      • 4.4.3 Heatmap
      • 4.4.4 Pairplot
    • 4.5 Distribution
      • 4.5.1 Boxplot
      • 4.5.2 Violin plot
      • 4.5.3 Histogram plot
      • 4.5.4 Density plot
      • 4.5.5 Joint plot
  • 5. Bokeh
    • 5.1 Basic Plotting
    • 5.2 Data Sources
    • 5.3 Annotations
    • 5.4 Categorical Data
    • 5.5 Presentation and Layouts
    • 5.6 Linking and Interactions
    • 5.7 Network Graph
    • 5.8 Widgets
  • 6. Plotly
    • 6.1 Fundamental Concepts
      • 6.1.1 Plotly Express
      • 6.1.2 Plotly Graph Objects
    • 6.2 Advanced Charts
      • 6.2.1 Advanced Scatter Chart
      • 6.2.2 Advanced Bar Chart
      • 6.2.3 Advanced Pie Chart
      • 6.2.4 Advanced Heatmap
      • 6.2.5 Sankey Chart
      • 6.2.6 Tables
    • 6.3 Statistical Charts
      • 6.3.1 Common Statistical Charts
      • 6.3.2 Dendrograms
      • 6.3.3 Radar Chart
      • 6.3.4 Polar Chart
      • 6.3.5 Streamline Chart
    • 6.4 Financial Charts
      • 6.4.1 Funnel Chart
      • 6.4.2 Candlestick Chart
      • 6.4.3 Waterfall Chart
  • Support
    • Donation
Powered by GitBook
On this page
  • 1. Button
  • 2. Select
  • 3. Checkbox
  • 4. Color Picker
  • 5. RadioButton
  • 6. Text Input
  • 7. Slider and Range

Was this helpful?

  1. 5. Bokeh

5.8 Widgets

Previous5.7 Network GraphNext6. Plotly

Last updated 4 years ago

Was this helpful?

Widgets are interactive controls that can be added to Bokeh applications to provide a front end user interface to a visualization. They can drive new computations, update plots, and connect to other programmatic functionality.

Widgets can also be used without the Bokeh server in standalone HTML documents through the browser’s Javascript runtime.

1. Button

from bokeh.layouts import column  # to grid plot graphs 
from bokeh.models import Button

button1 = Button(label="Success", button_type="success")
button2 = Button(label="Primary", button_type="primary")
button3 = Button(label="Warning", button_type="warning")
show(column(button1,button2,button3))

2. Select

from bokeh.models import Select

select = Select(title="Option:", value="hi", options=["hello", "Hola", "Hâllo"])
show(select)

3. Checkbox

from bokeh.models import CheckboxGroup
checkbox_group = CheckboxGroup(
        labels=["Option 1", "Option 2", "Option 3"], active=[0, 1])

show(checkbox_group)

4. Color Picker

from bokeh.models import ColorPicker
color_picker = ColorPicker(color="#4BBEE3", title="Choose color:", width=200)

show(color_picker)

5. RadioButton

from bokeh.models import RadioButtonGroup

radio_button_group = RadioButtonGroup(
        labels=["Option 1", "Option 2", "Option 3"], active=0)

show(radio_button_group)

6. Text Input

from bokeh.models import TextAreaInput
text_input = TextAreaInput(value="Hey!", rows=6, title="Write something:")

show(text_input)

7. Slider and Range

from bokeh.models import Slider
from bokeh.models import RangeSlider
from bokeh.layouts import column

slider = Slider(start=0, end=5, value=1, step=1, title="Count")
range_slider = RangeSlider(start=0, end=10, value=(1,9), step=1, title="Range")

show(column(slider,range_slider))